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Abstract

We present a global optimization strategy that incorporates predicted restraints in both a local optimization context
and as directives for global optimization approaches, to predict protein tertiary structure for a-helical proteins.
Specifically, neural networks are used to predict the secondary structure of a protein, restraints are defined as
manifestations of the network with a predicted secondary structure and the secondary structure is formed using local
minimizations on a protein energy surface, in the presence of the restraints. Those residues predicted to be coil, by
the network, define a conformational sub-space that is subject to optimization using a global approach known as
stochastic perturbation that has been found to be effective for Lennard–Jones clusters and homo-polypeptides. Our
energy surface is an all-atom ‘gas phase’ molecular mechanics force field, that is combined with a new solvation
energy function that penalizes hydrophobic group exposure. This energy function gives the crystal structure of four
different a-helical proteins as the lowest energy structure relative to other conformations, with correct secondary
structure but incorrect tertiary structure. We demonstrate this global optimization strategy by determining the tertiary
structure of the A-chain of the a-helical protein, uteroglobin and of a four-helix bundle, DNA binding protein.
© 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The protein structure prediction problem is to deter-
mine the three-dimensional arrangement of the protein
molecule, given a protein-solvent potential or free en-
ergy surface in accordance with the amino acid se-
quence (Vasquez et al., 1994; Eisenhaber et al., 1995).
The ‘rugged landscape’ topography of this surface,
defines the underlying difficulty in solving the protein
structure prediction problem; the native structure mini-
mum, presumably the global minimum, must be dis-
criminated from other minima, whose number rises
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exponentially with the number of amino acids in the
sequence. Furthermore, this energy surface is difficult
to model reliably in a global sense, i.e. to ensure that all
misfolds are higher in energy than the correctly folded
conformation.

For a sufficiently well-defined energy surface, mathe-
matical optimization research for obtaining the global
solution to a large nonlinear system with numerous
local minima, can be broadly categorized into two
approaches. Constrained optimization methods rely on
the availability of sufficiently well-defined constraints,
so that the desired solution is the only available solu-
tion and local optimization algorithms can be applied.
However, the necessary set of biophysical constraints,
needed for robust protein structure determination can-
not be unambiguously predicted at this time (Head-
Gordon et al., 1991, 1992; Gay et al., 1992;
Head-Gordon and Stillinger, 1993a,b; Head-Gordon,
1994). In fact, various conformational search strategies
assume perfect knowledge of some aspects of the struc-
ture: for example a-helical and b-sheet secondary struc-
tures (Friesner and Gunn, 1996). Global optimization
techniques, in principle, avoid this predictive capacity
problem, by systematically searching the potential en-
ergy surface to find all low-lying minima including the
global energy minimum. Global optimization ap-
proaches are much more immature, by comparison to
local minimization and theoretical guarantees for find-
ing the global minimum are non existent or weak
guarantees at best.

Global optimization methods only make sense in the
context of an objective function whose global minimum
is actually the desired minimum sought. While in prin-
ciple the protein structure prediction problem seeks the
global free energy minimum, because folding is under
thermodynamic control (although there are many ex-
amples of proteins that are long-lived stable kinetic
intermediates), the modeling of an energy function.
That guarantees the native structure as the global mini-
mum relative to all conceivable misfolded structures is a
formidable task. It is well appreciated that so-called
‘gas phase’ protein molecular mechanics force fields do
not differentiate well between folded and misfolded
energy conformations (Novotny et al., 1984). Qualita-
tive improvement in lowering the energy of correctly
folded structures relative to non native structures, is to
incorporate a description of aqueous solvation (Wesson
and Eisenberg, 1992; Schiffer et al., 1993).

We introduce a global optimization strategy and a
new energy function that describes the hydrophobic
effect, to predict the structure of a-helical proteins. Our
global optimization approach is to make good predic-
tions of certain aspects of protein structure such as
a-helices, b-sheets and coil regions by neural network
techniques (Qian and Sejnowski, 1988; McGregor et al.,
1989; Kneller et al., 1990; Holley and Karplus, 1991;

Muskal and Kim, 1992; Head-Gordon and Stillinger,
1993a,b; Stillinger et al., 1993; Rost and Sander, 1994;
Yu and Head-Gordon, 1995) and then manifest them as
restraints to use within both a local optimization al-
gorithm and as guidance within various global opti-
mization frameworks (Byrd et al., 1994, 1995a,b; Azmi
et al., 1999). The use of restraints should allow the local
minimization components of the method to quickly
refine a-helices and b-sheets, when they are predicted
with reasonable accuracy. The global optimization
component is a stochastic-perturbation algorithm that
minimizes in dihedral angles (Byrd et al., 1994,
1995a,b), with a key new component being steps that
perform global optimizations over small subsets of
dihedral angles that are predicted to be coil from the
network predictions (Azmi et al., 1999; Crivelli and
Head-Gordon, 1999; Crivelli et al., 1999). Global opti-
mization should be particularly effective in resolving
these regions for which it is not possible to define a soft
constraint.

In addition, we introduce an atomic pairwise additive
solvation term, that stabilizes the burial of hydrophobic
groups as well as spatially longer ranged stabilization of
hydrophobic groups when there are interleaving polar
atoms or water. When this solvation potential is com-
bined with the AMBER95 protein force field (Cornell
et al., 1995), the total function gives the crystal struc-
ture of four different a-helical proteins as the lowest
energy structure, relative to other conformations with
correct secondary structure but incorrect tertiary
structure.

This paper is meant to describe our methodology and
developed algorithm for ab initio prediction of protein
tertiary structure with combined restraints and stochas-
tic-perturbation with a reliable energy function. We
have recently reported on preliminary results found
using an analytical smoothing technique, combined
with stochastic-perturbation and restraints (Azmi et al.,
1999). It is important to emphasize that this work is
very preliminary, but robust enough to provide a spe-
cific ab initio prediction on two a-helical proteins, the
A chain of uteroglobin (2utg–A) (Bally and Delettre,
1984) and a four helix bundle DNA binding protein
(1pou) (Assa-Munt et al., 1993). The promise of our
approach will only be known with further testing and
predictions of a large number of a-helical proteins and
extensions to b-sheet topologies.

2. Methods

2.1. The energy function

The AMBER molecular mechanics energy function
(Cornell et al., 1995), VMM, is used to represent the
protein–protein interactions. We have also added an
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empirical solvation free energy term, Vsolvation, to de-
scribe hydrophobic effects that acts between all
aliphatic carbon centers. This description is motivated
by our recent experimental, theory and simulation work
to determine the role of hydration forces in the folding
of model protein systems (Pertsemlidis et al., 1996;
Head-Gordon et al., 1997; Sorenson and Head-Gor-
don, 1998; Hura et al., 1999; Pertsemlidis et al., 1999;
Sorenson et al., 1999), as well as Pratt–Chandler inte-
gral equation theory (Pratt and Chandler, 1977, 1980)
that describes solute–solute correlations for small hy-
drophobic solutes in aqueous solution. The integral
equation theories and simulations (Zichi and Rossky,
1985; Head-Gordon, 1995; Rick and Berne, 1997) for
the association of two methane molecules in water,
show that there are two free energy minima for the
molecules in contact and the molecules separated by a
length-scale of one water molecule, with a barrier in
between. The benefit of this description is that (1) we
introduce a stabilizing force for forming hydrophobic
cores; (2) it is a well-defined model of the hydrophobic
effect for hydrophobic groups in water; and (3) it can
be devised as a continuous potential that is computa-
tionally tractable relative to solvent accessible surface
area models (Schiffer et al., 1993).

The functional form of the solvation term is a sum of
gaussians
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where the sum over i and j is over the aliphatic carbon
centers and the sum over k is the number of gaussians
necessary to describe the position (ck), depth (hk) and
width (wk) of the minima and barrier of the aqueous
methane potential of mean force. For uteroglobin, we
first tested a solvation energy function, using values of
ck, hk, wk and M that reproduced the potential of mean
force of two methanes in water taken from a molecular
simulation using a novel representations of liquid water
(Head-Gordon, 1995). However, we initially found bet-
ter agreement between good folds and energies by
eliminating the solvent-separated minimum, i.e. we
have used values of the parameters for stabilizing
methanes in contact only.

For the DNA binding protein, our new optimized
solvation energy function used a potential of mean
force description with the solvent-separated minimum
restored, but more exaggerated stabilization of both
contact and solvent separated minimum with respect to
the original methane potential of mean force. Electro-
static interactions were also screened by a dielectric
constant of 4, typical of a protein environment. Fur-
thermore, this energy function gives the crystal struc-
ture of four different a-helical proteins (including
uteroglobin) as the lowest energy structure relative to
other conformations with correct secondary structure
but incorrect tertiary structure that we have found so
far. The proteins are 2utg–A (Bally and Delettre,
1984), 1pou (Assa-Munt et al., 1993), 3icb (Szebenyi
and Moffat, 1986) and calmodulin and we have interro-
gated on the order of 40 000 structures (with a majority
for 1pou and 2utg–A) that were all higher in energy
than the crystal structure, with root mean square devia-
tions (r.m.s.d.) between a-carbons ranging from 5.5 to
15.0 A, . Table 1 contains the parameters and functional
form used for solvation in our present study.

2.2. Neural network algorithm

Our research in neural network prediction of protein
secondary structure, has focused on the design of neu-
ral network architectures, that actually mitigate the
degradation of network performance, due to database
deficiencies and the multiple minimum problem in the
space of the network variables. Thus far, we have
considered network architecture design for helix/no he-
lix prediction of real proteins (Head-Gordon and Still-
inger, 1993a,b), a pilot study of secondary structure
prediction for real proteins using an input window of
nine amino acids (Yu and Head-Gordon, 1995) and
tertiary structure for complete sequence-structure data-
bases of a model chemistry (Head-Gordon and Still-
inger, 1993a,b). In the pilot study of protein secondary
structure we showed that, compared to arbitrary net-
work architectures, network design features serve as
constraints for a more optimal network solution, that
partially overcomes the network multiple minima prob-
lem (Yu and Head-Gordon, 1995). These designed net-
works also exhibited superior generalization to the test
set of proteins, partially overcoming the deficiencies of
the training database, by more efficiently mining gen-
eral rules and not specifics of the training set of
proteins. Below, we outline our neural network topol-
ogy approach for secondary structure prediction, for
real protein databases, using an input window size of 17
amino acids, with a two-bit, three-state output (helix,
sheet and coil). We hope to provide an expanded report
on this work in the near future.

The network involves a careful choice of input repre-
sentation for each amino acid, a primary structure

Table 1
Parameters used for solvation function, Vsolvation Eq. (1)

Hi WiGaussian, i Ci

0.736921 3.33343 1.59315
0.719092 0.309384.94296

3 0.63525−0.573106.65118
1.83343 0.59315−2.236924
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input window with individual feature detectors of local
secondary structure, as well as hidden neurons that
amplify whether the window is composed of helix-pro-
moting or sheet-promoting residues. The network also
has a recurrent input space comprising the current
secondary structure prediction for each amino acid in
the sequence window. Finally, we assume imperfect
knowledge, as to whether a protein is classified as
all-helix, all-sheet, or other. Our results for our primary
network can be summarized as follows: when the
threshold for the two-state output maximizes the per-
centage correct on the training set, we obtain an aver-
age prediction on nine test sets of Qtot=66.35%, with
Qa=58.17, Ca=0.48, Qb=45.85, Cb=0.40 and
Qcoil=77.52, Ccoil=0.40%, where Ca and Cb are corre-
lation coefficients, Qa, Qb and Qcoil are percentages of
correct predictions of a-helices, b-sheets and coils, re-
spectively and Qtot is the sum of the percentages above
defined.

It is important to emphasize that we have achieved
this performance (1) without using sequence or struc-
tural homologies as either input or training parameter;
(2) without a ‘jury’ of networks, or special criteria for
selecting the best trained network; and (3) using far
fewer network variables than past feed-forward back-
propagation networks, that predict secondary structure.
We emphasize these points, not to diminish the impor-
tance of past efforts, but to indicate that the combina-
tion of our fully designed networks with sequence
homology and trained network selection, may actually
boost average performance above the current average
of :70% (Rost and Sander, 1994) in the future.

We have focused on ten a-helical target proteins that
range in size between :70 and 150 amino acids for
prediction, using our global optimization strategy, al-
though we only have results on two proteins thus far:
2utg–A and 1pou. Our overall secondary structure
prediction performance on these ten proteins, range
from 67 to 88% correct secondary structure assignment.
For 2utg–A and 1pou the secondary structure predic-
tions are 80% correct.

2.3. The use of ‘soft’ constraints in protein structure
prediction

We have applied predicted structural information in
energy minimization predictions in the ‘antlion’ method
(Head-Gordon et al., 1991; Head-Gordon and Still-
inger, 1993a,b; Head-Gordon, 1994). The ultimate ob-
jective of this method, is to simplify the energy surface
for any polypeptide or protein, so that only a single
minimum remains. Furthermore, the remaining mini-
mum should occur ‘close’ to the initial hypersurface
native structure minimum. Optimization then proceeds
in three stages: (1) use predicted structure information
to replace the complicated hypersurface by its simplified

variant; (2) optimize on the simplified hypersurface; (3)
optimize on the ‘real’ hypersurface using the optimized
structure found from the second stage as an initial
guess.

The operation for smoothing the energy surface is to
formulate mathematical functions that are added on as
biases or restraints to the original surface. These func-
tions are derived from imperfect and incomplete protein
structure prediction, based on other methods such as
neural networks. The protein structure biasing method
emphasizes that a local optimization algorithm with
well-formulated predicted constraints or biases can suc-
cessfully deal with some aspects of the global optimiza-
tion problem. The biasing method has been
demonstrated to be successful on a small, naturally
occurring 26-residue polypeptide, melittin, which forms
two a-helices separated by a bend at mid-sequence
(Head-Gordon and Stillinger, 1993a,b; Head-Gordon,
1994).

Given the neural network predictions of the sec-
ondary structure state of each amino acid, for a given
protein, two restraints can be defined for a-helical and
b-sheet categories. The first is a bias of the backbone
torsional angles of a residue according to

V
fc

=kf(1−cos(f−f0))+kc(1−cos(c−c0)) (2)

where f0 and c0 are assigned values appropriate to a
perfect a-helix or b-sheet and kf and kc are force
constants related to the output, or strength, of the
neural network. For the case of helical proteins, the
focus of this paper, amino acids that are predicted to be
non helical will have small force constants, while
residues predicted to be helical will have force constants
that give rise to stronger restraints. The second function

VHB=qiqi+4/ri,i+4
(3)

encourages helical hydrogen bonds to form between the
oxygen atom of residue i, Oi, and the hydrogen of
residue i+4, Hi+4. In this case qi= −qi+4, is the
direct neural network output and provides a strong
incentive for an intramolecular hydrogen bond to form
when residue i is strongly predicted to be helical. Devel-
opment of restraints such as Eq. (2) and Eq. (3) for
b-sheets is to be explored by ‘matching’ algorithms
(Lovasz and Plummer, 1986) in the near future.

2.4. Stochastic-perturbation global optimization
algorithm

Given the predictions of secondary structure de-
scribed above, there remains the difficult optimization
problem of finding the torsion angles not specified by
those predictions, as well as determining the values of
the predicted angles more precisely. In this problem, the
potential energy function still has a very large number
of local minimizers and a good large-scale global opti-
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Table 2
Outline of stochastic-perturbation algorithm

Phase I: generation of initial configurations

(1) Generate sample configuration.
Build up sample configurations by sequentially generating

random values for each dihedral angle (from one end of
the protein to the other) and choosing the one that
produces the lowest energy function.

(2) Optimize.
Select a subset of the best configurations created in step (1):

perform a full-dimensional local minimization for each
configuration created: store a subset of the best
minimizers for further improvement in Phase II.

Phase II: global optimization.

For some number of iterations:
(1) Define a small-dimensional subproblem.
Select a minimizer from the list of full-dimensional local

minimizers and a small subset of dihedral angles to be
optimized.

(2) Perform a small-scale global optimization
To find the best values for the dihedral angles selected in

Step 1 with the remaining angles temporarily fixed at their
current values.

(3) Refine the best structure resulting from Step 2
Into local minimizers in the full variable space, using

roughly the same process as in Step 2 of Phase I and
merge the new lowest configurations into the existing list
of local minimizers.

optimization program. This global optimization is done
holding all internal coordinates of the chosen confor-
mation fixed except for 2–10 of the torsion angles. We
use an adaptation of the probabilistic algorithm
(Rinnooy-Kan and Timmer, 1984) for this small-dimen-
sional optimization. About 5–25 of the best local mini-
mizers, found in the small-dimensional global
optimization, are then used as starting points for local
optimization over all problem variables using a limited
memory quasi-Newton method (Liu and Nocedal,
1989). The phase II iteration is repeated, if resources
permit, until no further progress can be made. A frame-
work for the stochastic-perturbation algorithm is out-
lined below in Table 2.

The stochastic-perturbation algorithm allows one to
explore the vast search space of possible configurations
alternatively in breadth and depth. The configurations
passed from phase I to phase II can be thought of as
the roots of trees of possible solutions, that are first
traversed in depth regardless of the energy function
values, when compared across the breadth of the tree.
This is important, as the energy values do not necessar-
ily decrease monotonically as the tree is traversed in
depth. After the initial phase, in which all the trees have
been searched to some specified depth, the selection of
configurations for the second phase is based on the
energy value. The number of these configurations to be
considered for further refinement will determine the
breadth of the search.

2.5. Combining restraints and the
stochastic-perturbation approach

The novel contribution of this research, is the use of
partial secondary structure information within a global
optimization algorithm, for determining tertiary struc-
ture. As the starting point for this approach, secondary
structure is predicted by the neural network algorithm
described above. Following neural network prediction
of secondary structure, our approach, like the previous
stochastic-perturbation algorithm, consists of two
phases.

The first phase starts with a completely extended
conformer, with no secondary or tertiary structure and
performs local minimizations using the sum of VMM,
Vsolvation and the restraints defined in Eq. (2) and Eq.
(3) first and then the unbiased potential energy func-
tion, VMM+Vsolvation. The local minimizations on the
biased function encourage the formation of a-helices in
the regions where predictions of a-helix are strong. It is
important to mention that, because the network predic-
tions may not be exact, the biasing terms may either
force some helical forms in places where they do not
belong or discourage their formation in places where
they do belong. The local minimizations on the uncon-
strained function allow the entire configuration to

mization algorithm is required. We carry out this opti-
mization using the stochastic-perturbation algorithm
developed in (Byrd et al., 1994, 1995a,b) which is based
on the original approach of Rinnooy-Kan (Rinnooy-
Kan and Timmer, 1984). The two novel aspects of this
method are that redundant work is avoided, by assign-
ing new sample points to basins of attraction, defined
within a critical radius that avoids minimizations that
reach the same local minimum (Rinnooy-Kan and Tim-
mer, 1984; Byrd et al., 1994, 1995a,b). Furthermore, the
method has theoretical guarantees of finding global
minimum when enough sample points are used, al-
though high probabilities of finding global minimum
are prohibitively expensive.

The stochastic-perturbation global optimization al-
gorithm, is based on generating and improving a pool
of local minimizers of the objective function. It consists
of two phases. In the first phase (phase I), a set of
initial conformations is randomly generated and each is
used as a starting point for a local minimization. The
best of the resulting local minimizers forms a pool used
in the next phase. The second phase (phase II) consists
of repeatedly selecting the best unexamined conforma-
tion and modifying it, using a small-dimensional global
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change, in an attempt to correct at least partially, those
areas in which predictions are wrong. The typical out-
put from this phase is at least partially correct in its
secondary structure, but does not contain correct ter-
tiary structure.

The second phase starts with the outcome of the
previous phase as the first member of a list of local
minimizers. From the set of dihedral angles predicted to
be coil, the algorithm randomly selects a subset. The
algorithm then performs a small-scale global optimiza-
tion, using the selected dihedral angles as variables,
while keeping the rest temporarily fixed at their current
values. This optimization produces a number of local
minimizers to the unbiased energy function, in the
subspace of dihedral angles chosen and then through
assignment of minima to basins of attraction and se-

lected minimizations, returns the global minimum in
that sub-space. The algorithm has been parallelized
(Crivelli and Head-Gordon, 1999; Crivelli et al., 1999)
so that on the order of 5–10 subspaces can be explored
at once. A number of those conformations with low
energy values are considered for further refinement,
that is done by performing local minimizations on the
full variable space. These minimizations are performed
using the unconstrained energy function. The new min-
imizers obtained from the local minimizations are
merged into the current list of minimizers. The lowest
energy conformation is selected from this list and the
second phase starts again. The process repeats for a
number of iterations. The new stochastic-perturbation
algorithm is outlined in Table 3.

3. Results

We test the stochastic-perturbation with restraints
algorithm on the prediction of the A-chain of
uteroglobin, 2utg–A and a four-helix bundle DNA
binding protein, 1pou, proteins comprised of :70
amino acids. Phase I is primarily the generation of a
structure (or structures) consistent with the restraints. It
begins with a starting structure of the target protein,
that is the minimum closest to the fully extended form
with all backbone pairs assuming f=180° and c= −
180°. The optimization is performed on the sum of the
AMBER surface, VMM and Vsolvation and the restraints
from the neural network predictions (Eq. (2) and Eq.
(3)), using a limited memory BFGS local minimization
algorithm (Liu and Nocedal, 1989). The converged
structure on the modified surface is then used as a
starting configuration for optimization on VMM+
Vsolvation alone. The number of iterations necessary to
meet this goal is about 5000.

Fig. 1 shows a ribbon diagram comparison between
the crystal structure of the structural target 2utg–A and
the end product of phase I of our algorithm. At the end
of phase I, is a protein with its helices formed and
extended structures in regions predicted to be coil. The
neural network made good predictions of the helical
content of the target protein; three of the four helices in
this protein are reasonably well formed as a result. One
helix is much more distorted, however, as a conse-
quence of weak predictions in that region of the se-
quence. It is important that the network did predict
these regions to be helical, but only weakly so. We did
another test with a modified prediction file that assumes
stronger helix prediction, i.e. by increasing the scaling
factor in that region of the sequence and obtained a
better formed helix. We decided to use the latter struc-
ture as a starting configuration for phase II, as well as
the modified prediction file, as we anticipate that future
improvements in our network prediction algorithm,

Table 3
Outline of stochastic-perturbation with biasing algorithm

Phase I: generation of initial configurations based upon
structure prediction

(1) Generate sample configuration.
Start with completely extended conformer: no secondary or

tertiary structure.
(2) Optimize with restraints
(a) Create the helical biasing terms, Eq. (2) and Eq. (3):

force constants and charges are defined as the output of
the neural network (a value between 0.0 and 1.0); force
constants are scaled to appropriate energy units.

(b) Perform local minimization on the biased energy
function which incorporates structure prediction in the
output of (2a).

(c) Perform local minimization on the unbiased potential
energy function using the structures from (2b) as starting
configuration.

Phase II. global optimization utilizing structure prediction.

For some number of iterations:
(1) Define a small scale global optimization problem based on

predictions.
Select a configuration from the list of local minimizers:

select a subspace, defined as 4–10 dihedral angles
randomly chosen from the amino acids predicted to be
coil.

(2) Perform a small-scale global optimization
To find the best values for the dihedral angles selected in

step 1b with the remaining angles temporarily fixed at
their current values. This stage uses the unbiased energy
function.

(3) Refine the few best structures resulting from step 2
Into local minimizers in the full variable space that are

consistent with the structure predictions and merge the
new lowest configurations into the existing list of local
minimizers.



S. Cri6elli et al. / Computers & Chemistry 24 (2000) 489–497 495

Fig. 1. A ribbon diagram comparison between the crystal structure of the A-chain of uteroglobin (top) and the end product of phase
I of our algorithm (bottom). At the end of phase I is a conformation with its helices formed and extended structures in regions
predicted to be coil. The neural network made good predictions of three of the four helices in this protein and are reasonably well
formed as a result. One helix was much more distorted, however, as a consequence of weak predictions in that region of the
sequence. We modified four helical predictions in this helix to be stronger and used the modified predictions to arrive at the structure
shown here.

largely exploiting multiple alignments, will largely cor-
rect weak predictions for a-helical proteins. We note
that at the end of phase I for this algorithm, essentially
no structural diversity is introduced into the start of
phase II. Similar results were found for 1pou, although
we did not need to modify the predictions in any way.

It is possible to either use the result of phase I
directly as the starting structure of phase II, or generate
random values for the backbone dihedral angles of the
predicted coiled regions to incorporate structural diver-
sity at the end of phase I. We used the result of phase
I as the starting configuration for phase II for 2utg–A
and we generated a diversity of starting structures from
the phase I output for 1pou by randomizing coil dihe-
dral angle values.

An iteration of phase II of the algorithm performs a
global optimization in a sub-space of some dihedral
angles that are chosen from all residue f, c, x torsion
triplets (2utg–A) and f, c torsion pairs (1pou) pre-
dicted by the network to be coil. Within this subspace,
the global optimization method of Rinnooy-Kan, sys-
tematically explores this space to zone in on the region
most likely to contain the global minimum. The al-
gorithm is general, in the sense that arbitrary dimen-
sional sub-space sizes can be explored. We have decided
on a strategy of defining the set of 28 predicted coil
residues as the pool of possible f, c pairs or f, c, x

triplets and either three pairs (1pou) or two triplets
(2utg–A) were randomly chosen from that pool, for a
total sub-space of six dihedral angles.

The chosen sub-space is subdivided in M regions, M
being the number of workers. Each worker randomly
generates 50 sample points over a uniform distribution,

in its assigned region of the domain, for a total of 400
points on the entire subspace (Crivelli and Head-Gor-
don, 1999; Crivelli et al., 1999). Each phase II iteration
corresponds to roughly 4 cpu hours using between 28
and 64 processors on the Cray T3E.

Fig. 2a shows the best energy conformer for 2utg–A
after ten iterations of phase II, where the overall shape
of the predicted fold is quite reasonable. The a-carbon
r.m.s.d., between the backbone of the crystal structure
and the backbone of the predicted structure is just
under 7.4 A, . Since the algorithm is statistical, i.e.
perturbations of the sub-space definitions are random,
we may need more runs to verify that no other struc-
ture is found. However, part of the output of a phase II

Fig. 2. (a) A ribbon diagram comparison between the crystal
structure of the A-chain of uteroglobin (left, red) and the
outcome of phase II of our algorithm (right, blue). (b) A
ribbon diagram comparison between the NMR structure of a
four helix bundle DNA binding protein (1pou) (right, red) and
the outcome of phase II of our algorithm (left, blue).
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run is a list of the 20 most energetically favorable
structures found. Some of these structures differ in
small ways from the best energy conformer and are
only slightly higher in energy on average. In cases
where the energies are very different, the fold is very
different as well, indicating that the energy function is
acting sensibly.

Fig. 2b shows the best prediction for 1pou. The
a-carbon r.m.s.d. value of our prediction with respect
to the NMR experimental structure is 6.3 A, . An impor-
tant benefit of our new energy function is that our
current best prediction is higher in energy than the
NMR structure, which means that further optimization
may lower the a-carbon r.m.s.d. even further as energy
improves. Finally, we note that when an all heavy atom
r.m.s.d. is evaluated, i.e. including side chains, that the
r.m.s.d’s, increase only 0.5–1.0 A, , indicating that
roughly, correct tertiary fold found by conformational
searches over the backbone degrees of freedom influ-
ences reasonable side chain packing.

4. Summary and conclusions

We have developed and tested our new methodology
described here for determining tertiary structure of
a-helical proteins. Neural network predictions of sec-
ondary structure are manifested as restraints that per-
mit partial solution to the global optimization problem
within a local optimization algorithm. The neural net-
works also bridge the gap between primary and tertiary
structure, by greatly narrowing the conformational
search space, by focusing the work in the subspace of
dihedral angles predicted to be coil by the neural
network.

We have been able to find, based on the AMBER
protein force field and an empirical model of solvation
pertaining to the hydrophobic effect, a reasonable pre-
diction for the A-chain of uteroglobin that has the right
fold and a-carbon r.m.s.d of 7.4 A, . We have obtained
a reasonable prediction for the DNA binding protein
1pou with a 6.3 A, a-carbon r.m.s.d, a structure that is
our lowest energy value determined thus far, but which
is still higher in energy than the crystal structure. We
note that our approach is in no way limited by size and
we hope to report on four additional a-helical target
proteins ranging in size between 104 and 154 amino
acids in the very near future.

A critical part of future work is the prediction of the
more difficult b-sheet class, or arbitrary class, of
proteins. This requires the extension of the use of
restraints to include b-sheet and disulfide bond forma-
tion and regions where reverse turns occur and maybe
even supersecondary structure motifs. We will use ei-
ther our own developed network approach, or a variety
of established structure prediction programs for pre-

dicting different aspects of structure such as protein
class or disulfide bonds. This extension will also use the
restraints to guide the global optimization algorithm,
but now for other protein classes than a-helix.
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